If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2-30q+10=0
a = 3; b = -30; c = +10;
Δ = b2-4ac
Δ = -302-4·3·10
Δ = 780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{780}=\sqrt{4*195}=\sqrt{4}*\sqrt{195}=2\sqrt{195}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{195}}{2*3}=\frac{30-2\sqrt{195}}{6} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{195}}{2*3}=\frac{30+2\sqrt{195}}{6} $
| 49=4(4+x) | | -5n=9=-46 | | 27=1/2(5x+19) | | 5x-x=x+16-x/4 | | x+4/3=x-12/7 | | 32=3/5x-1 | | -6x+3(2x)=16 | | -6-2b=-2(1+3b) | | 16y=7y+54 | | 3z+18(z+1)=60 | | 5x-10+3x+24=6x-25+2x+19 | | 3(u-4)-9=−3(−6u+9)-3u | | x=0-9 | | 3(h/18-4)=2 | | 3x^-100=-25 | | 5a-5=7×2a | | 3y+11=8y+51 | | 9j+14=41 | | x=0x-9 | | 10/7x=11 | | g-3+ 2= 3 | | 3030+1234432c=100000000 | | 5/2n=8/3n-12 | | 1/4(-8x+16)=5x-x+38 | | =−3−u49−−3+−6u93u | | Y=-3w+9 | | -5(p-3)=-25 | | 8(12-k=3(k+21) | | -5(p-3=-25 | | 2x^2-x-1/2=0 | | 1.25=1.2x | | 0.25m+15=0.35m+45 |